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ABSTRACT

We consider here a model of traffic flow on a road network.
For each ordered pair of nodes there is a demand function which
expresses travel demand between the two nodes as a function of travel
times on the network. Each'road (arc) has a delay function which
expresses travel time on that arc as a function of total traffic flow.
Our objective is to show how an equilibrium of travel times, flows,
and demands may be computed under conditions which are simple, general,
and plausible,

To solve the network problems we develop techniques for solving
the stationary point problem. These techniques for the stationary

point problem are the best of which we are aware.
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CHAPTER 1

INTRODUCTION

Let (’){,a) be a directed network with nodes i in 7[ and
arcs 1ij in @. Our interest is in the traffic flows and travel times
on the network.

For each arc 1ij we are given a delay function fij which
expresses travel time on arc 1ij as a function of the traffic flows on
the arcs of the network. We might expect that travel time along arc
ij would depend on the flow on that arc, but it may depend on flows
along other arcs as well. In particular a two-way street could be
modeled as a pair of opposing arcs, and the flow on one of the arecs
might affect the travel time on the other arc.

Another way in which the interactions between different arcs
may arise is in the modelling of an intersection. Florian and Nguyen
[10] employed two methods of representing an intersection, see
Figures 1 and 2. Travel time across the intersection will depend on
the traffic in other directions. For instance the time required to
make a left turn will be affected by the density of oncoming traffic.

For each pair of distinct nodes i,k we are given a travel
demand function gi,k which expresses demand for travel from i to k

as a function of travel times between nodes on the network. Demand for

travel from i to k would, of course, depend on travel time from
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i to k. But it might also depend on travel times between other pairs
of nodes, for instance from i to some alternate destination. Later in
this chapter we will address some of the issues involved in deriving
these demand functions.

The ability to handle these interactions between various arcs
and origin-destination pairs is the principal contribution of this paper.

Many models very much like the model presented here have been
developed over the last 25 years. The earliest examples of this kind
are due to Wardrop [13] and Beckman [2]. Thesé models are based on the
notion that the road system has a large community of users, with each
user taking the quickest route available, given the actions of other
users. In addition, the number of trips made may depend on the time
required to meke a trip. On the other hand, travel time on a particular
road will depend on traffic volume.

Numerous solution procedures have been proposed for these models.
The usual approach has been to reformulate the equilibrium problem as a
convex programming problem. This has the advantage that convex programming
technicues when applied to this type of problem can be very efficient [9].
Rather strong conditions must be satisfied by the functions f and g in
order for these procedures to be valid. In particular, f must be
integrable and g must have an inverse which is integrable. This will

be true if each f,. depends only on the total flow and each

1J

depends only on t

v
“k Yij,k

g. and is monotone decreasing. The equilibrium
i,k i,k

problem is solved under conditions like these by Beckman (3], Dafermos

and Sparrow [5], Florian and Nguyen [9], and others.
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Dafermos [4] discusses a model in which travel times on one arc
may depend on the flow on another arc in order to model the interaction
of traffic going in opposite directions on a two-way street. In order
to use the nonlinear programming approach she assumes that the delay
functions are continuously differentiable, with symmetric Jacobian
matrices. These assumptions are essentially a restatement of the
integrability conditions mentioned above. These are reasonable when the
street is symmetric and the traffic flow is about the same in each
direction. Otherwise, the methods presented here would seem more
applicable. This would be particularly true for the modeling of an
intersection where the situation would normally be quite unsymmetric.

In practice the demand and delay functions f and g are at
best empirical fits and can be endowed with these or any other restric-
tions which may seem useful. It should be noted, however, that the
approach used here does not require such restrictions, and these restric-
tions can be expected to complicate the handling of interactions between
various arcs and origin-destination pairs as described above. Indeed to
compute an equilibrium it is only necessary that the delay functions

fij be positive on each arc, that the travel demand functions

i,k
be nonnegative and bounded for each pair of nodes, and that the network
be complete that is, there is a directed path from every node to every
other node. Unfortunately we must pay a price in computational efficiency
for the additional generality. For probliems which can be solved by
convex programming techniques that would be the best approach.

Next we present the mathematical conditions for a user

ecuilibrium. The travel time from node i to node k will be written

ti K The flow on arc ij with destination k will be written yij K
’ F




We say that the vectors of travel times t and flows x and y are

in equilibrium if the following conditions hold.

La) g (t) = § e § Tt i4k, i, k€N

1515 y =0

Le) by, < fij(x) L& T ifk ij< @ k€ 7]
tex =0 <N

1.4) yij,k-(fij(x) TR i#k ij - @ ke

l.e) =3 ¥ ij€ a

X, . = ol
1] k 135 e

It may be useful to think of this system as a multicommodity
network, where all of the traffic destined for a particular node k
is a separate commodity, all of which must be shipped to node k via
the network. In this way gi,k(t) is the amount of commodity k
which must travel from node i to node k. This trip will traverse a path

of arcs from 1 to K,

Condition (1l.a) is the conservation of flow equation. It says
that the traffic leaving node i with destination k is the sum of the
traffic arriving at node i with destination k and the traffic

originating at i with destination k.

Condition (1.b) says that traffic flows cannot be

negative.
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Conditions (l.c) and (1.d) require that traffic flow by the
fastest route available. In (l.c) we -2quire that ti,k not exceed
the minimum travel time from i to k given the flows y on the net-
work. Then (1.d) says that traffic may flow only along & route which

achieves this minimum travel time. Together (1l.c) and (1.d) imply

the principle of minimum travel time. This says that if any traffic

flows from i to k, that is if ZJ. ¥iq k> 0, then
-~ b 4
ti,k = min (fig(y) + tj,k’

Equation (1.e) relates the basic flows y to the total arc flows x.
More generally, the functions f and g may be point-to-set
maps. In this case we say tha’ travel times t, flows x and y, and

arc delays 1 are in equilibrium if the following conditions hold.

l.a) Zyij,k - E‘, Yi1,k € gi)k(t) i#k i,ke?
1.b) y>0
l.c) T € f£(x)
b e S Tag t by i4k ij€@a ke
toy = O x -
1.4) gy (Tyy * by = by ) = O 14k 1@ k f)z
l.e) Xi5 = E Yiix

—— ————
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In the following theorems we require that the delays and demands
be expressed in terms of upper semicontinuous convex valued point-to-set
maps. In practice these functions are usually continuous and hence

satisfy the requirements.

THEOREM 1. Suppose (7?,6) is a complete network. Suppose
i) f, the delay function is positive, convex valued, and upper semi-
continuous on {x|x > 0} and
ii) g, the demand function is nonnegative, bounded, convex valued, and

upper semicontinuous on {t|t > 0}.

Then a2 solution to the equilibrium problem exists and can be computed by

the Eaves-Saigal algorithm. 0

Recently Aashtiani [1] has shown how the equilibrium problem can
be formulated as a complementarity problem. Complementarity problems
will be defined in Section 1 of Chapter 2. Aashtiani's approach is like
the approach used here. He proved an existence theorem which is similar
to Theorem 1, but he shows that his solution procedure may not converge
under the conditions of his theorem.

The conditions of Theorem 1 would seem to be sufficiently general
to allow the modelling of a traffic network. However, many actual
systems have been modelled with demand functions which are unbounded when
the corresponding travel times are small. Beckmann [3] suggests the

following formula for travel demand.
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Here p 1is the vector of populations at various nodes, and a and ¢

are given constants. Utility functions can also be used to derive

travel demands. In neither case are the conditions of Theorem 1 satisfied.

It will be easy to see that the explicit function given above satisfies
the conditions of Theorem 2. Theorem 5 and the discussion preceding

it show how a demand function may be derived using utility functions
which satisfies the conditions of Theorem 2.

Here t > e means no component of t 1is less than e.

THEOREM 2. Suppose (77,@) is a complete network. Let e > O. Suppose

i) f, the delay function is upper semicontinuous and convex valued,
i1) Each f.lj(x) > ¢ for all x >0, and
iii) g, the demand function is nonnegative, bounded, convex valued and

upper semicontinuous, on {t|t > €].

Then a solution to the equilibrium problem exists and can be computed by

the Eaves-Saigal algorithm. 0

Theorem 1 is just the special case of Theorem 2 where e = O.
The following paragraphs will show how the assumptions on g in
Theorem 2 arise naturally when g is derived as the sum of demands

by consumers, each maximizing his own utility function.




We now suppose that the network is used by several consumers j.
Each observes the condition of the network as measured by the travel
time vector t. Each sets up a new potential demand vector that maximizes
his utility. His utility is affected by the amount of travel between
the various node pairs on the network, and the total time devoted to

travel. This utility is expressed through a function Ud. For simplicity

J on the total amount

we assume that each consumer has an upper bound a
of time he has available for travel. The sum over all j of the demands

for travel originating at 1 and destined for k represents (6D

i,k
Given travel times the vector of t, the jth consumer will find

a pair (q7,rY) which maximizes

subject to dog < qJ
J

where rJ is the vector of travel demands for various node pairs, and
qJ is the total amount of time devoted to travel by j. The vector

product rJ-t is the sum of the time spent in travel between all node

pairs, hence its terms represent an allocation of qJ.

The following theorem shows that the demand function derived as
the sum of these individual consumer demands satisfies the requirements
of Theorem 2. It tells us that if g 1is derived as above and f > ¢

for any ¢ > O then the hypotheses of Theorem 2 will be satisfied.
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THEOREM 3. Suppose that each UY is convex and continuous. For each
t >0 define g(t) = Zj g9(t). Then for each ¢ >0, g is non-
negative, bounded, convex valued, and upper semicontinuous on

{t|t > e). a

In Theorems 1 and 2 conditions (1l.a) through (l.e) were shown
to have a solution and that the Eaves-Saigal algorithm can construct
a solution. For the special cases mentioned above where the problem
can be solved as a convex program the equilibrium solution can also be
shown to be unique. The following theorem extends the uniqueness
property to a more general situation.

A point-to-set mapping f 1is called monotone on K & RY if

2
for each pair of vectors xl and x~ in K and every yl € f(xl‘

D
and y € f(xeﬁ, xl-xe)'(yl-yg) > 0. The mapping f strictly monotone

D
if for every pair of distinct vectors xl and x in K, and every
1

4
yhe £(xh) and y° € £(x7), (xx°)-(y ) >o.

The following theorem includes the convex programming unique=-
ness result as a special case since the gradient of a strictly convex

function 1is strictly monotone.

THEOREM 4. Suppose in addition to the hypotheses of Theorem 2 that f
and -g are strictly monotone. Then the set of solutions to the equi-

librium problem is convex and the total flows x are unique. a

The proofs of the theorems of this chapter will be delayed until

Chapter 3 since they require the background material of Chapter 2,

10
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CHAPTER 2

THE STATIONARY POINT PROBLEM

The stationary point problem provides & common framework which
includes the linear and nonlinear complementarity problems as well as
fixed point problems. Applications come from such diverse areas as
economics, game theory, mathematical programming and mechanics. For this
reason the results of this chapter should be of interest beyond the
specific equilibrium problems of this dissertation. However the approach
used here is largely dictated by the problems at hand.

In Section 1 of this chapter after giving the necessary basic
definitions, we explore some of the more important special cases of the
stationary point problem. Section 2 is devoted to existence theorems;
in Section 3 we present two theorems which address the question of

uniqueness of stationary points.

2.1. Definitions and Examples

Let D be a subset of R°. A point-to-set map f from D +to

subsets of R is called upper semicontinuous if x> x and yl 5 f(xl)

imply that yi has a cluster point in f(x). (We must make a slightly

stronger definition here than is usual since we do not assume that the

image set is compact.)

We say that f 1is lower semicontinuous if xi —»x and y < f(x)

imply that there is a sequence yl -y such that yi € f(xi) for all i.

11
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If f 1is both upper semicontinuous and lower semicontinuous then f
is continuous.

The graph of f is {(x,y)|y : f(x)}. A necezsary and sufficient
condition for f +to be upper semicontinuous is that the graph of f is
closed and f 1is bounded on compact subsets.

If f(x) is any single point for each x then the above definition
of upper semicontinuity coincides with the usual definition of continuity.
The same is true for lower semicontinuity.

If D is a subset of R® then D¥ is the set of all nonempty
compact convex subsets of D.

Let K Dbe a convex subset of Rn. Let f£:K —»Rn* be upper semi-

continuous. A pair (x,y) 1is a stationary point of (f,K) if x € K,

y € f(x), and (u-x)-y >0 for all u€ K.

As an example consider the programming problem

min g(x)
x€K
where g 1is differentiable.

We now show that for every solution x* +to this minimi-ation
problem that (x*,Vg(x*)) is a stationary point of the pair (Vg,K).
Suppose x¥ solves the minimization problem. Then x* € K. Let
u € K. Singe g 1is differentiable we may expand it in a Taylor series

FOr . NE TOEEGS

g(hu + (1-N)x*) = g(x* + A(u-x*))

g(x*) + ANVg(x*).(u-x*) + Ag(A)

12




Here Q:R — R is a function which satisfies 1imx o(N) = 0. Since
-0

g(x*) < g(x* + AN(u-x¥)) for all A< [0,1], Vg(x*)-(u-x*¥) + a(r) >0
for all A £ [0,1]. Since lim%_eo a(A) = 0 we have Vg(x*)-(u-x*) >O0.
Since this is true for all u € K, (x*,vg(x*)) is a stationary point
of the pair (vg,K).

Given a convex cone K in Rn, its polar K& is the set of all
vectors y in R" such that x-y 208 for alll x € K. B LK S B

then the complementarity problem (f,K) is to find (x,y) satisfying

% &K, y € f(x) N K+, and xy =0

Much effort has been expended in studying the complementarity problem.
Moreover, a wide range of applied problems have been reduced to it.
However, in many instances the stationary point problem is the more
convenient reduction. The next result from Saigal [12] relates the

two problems.

*
Proposition 1. Suppose K 1is a convex cone and f:K - B . Then (x,y)

solves the complementarity problem if and only if it solves the stationary

point problem,

Proof. Suppose (x,y) solves the stationary point problem. Then

mMm

y€ f(x) and x'y <uy forall u<K. Since 0€ K, x'y <0. Also

m

x € K implies ox € K for p >0. So for p >0, (p-l)x-y > 0.
Since p-1 changes sign, we must have x-y =0, and thus u-y >0 for
all u € K which says that y € K+, so (x,y) solves the complemen-
tarity problem,

Next let (x,y) solve the complementarity problem, Hence for

all u€ K, uy >0 =xy or (u-x)-y>0. Now I need only to note

that x € K and y € f(x). o
13
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The following proposition concerns another important special
case of the stationary point problem. It also illustrates the relation-
ship between the stationary point problem end stationary points of mathe-

matical programming problems.

Proposition 2. Suppose A € R®**™ b e R®, and K = {xiiRnle < b].
*
‘ Let f:Rn -5 RY. Then (x,y) solves the stationary point problem

(f,K) if and only if x € K, y € f(x), and there is a 7 >0 for which

- (Ax-b) = 0 and ATW + o =0

Proof. Let (x,y) solve the stationary point problem. Then x solves

this linear program.

min y-u

Au < b

Let 1 be the solution to the dual

max =be7m

ATW +y=0

Now 7.(Ax-b) = O since ATn +y=0 and y+<x = =beT.,
Conversely if Ax < b, 7 > 0, 7+ (Ax=b) = 0, and ATn + y =0
then <bem = -7+Ax = y.x 80 x solves the primal linear program. If

in addition y € f(x) then f solves the stationary point problem. 0O

14
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2.2. Existence Theorems

This section has two main theorems which deal with the stationary
point problem. Theorem 3 is a very general but non-constructive result.
The proof is adapted from Saigal [ 1°’], but the theorem is more general
in that it deals with the stationary point problem rather than the

complementarity problem. If A and B are sets then we write A\\\B

for the intersection of A and the complement of B.

Theorem 5. Let K - R" be closed and convex, C © K be compact, and
T

let f:K >R* be upper semicontinuous. Suppose that for all

X € K\\\C, y € £f(x) there is a u > C for which (x-u).y >0 .

Then the stationary point problem (f,K) has a solution.

Proof. Define D fo be any compact convex set C & D T K such that
for all x€ C, y € K\\D there is a A >0 such that (1-A)x + Ay € D.
Let E be any compact convex set containing f(D).

For each y € R* define m(y) to be the set of all x € D
which minimize x:y on D. Then = is upper semicontinuous and for
each y € Rn, m(y) 1is nonempty, convex, and compact.

Define TI':D X E - D*¥ X E¥ by (x,y) - (v(y), f(x)). By the
Eilenberg-Montgomery fixed point theorem | 8], I' has a fixed point.
Call it (%.9).

I now need only show that %-§ < x:§ for all x < K. Suppose
to the contrary that there is some x € K with x-§ < X-§. Then
x - KN D. Also %¢ C since if & C then there is a A >0 such
that (1-A)%X + Ax - D, but this implies [(1-A)% + Xx]'y < %-§ which

contradicts the definition of %. So % 7 C.

L5




Then there is & u< C with (%-u):§ >0 or X-§ >u-y. There
isa A >0 with (1-A)u + Ax € D, so

C1-Mu + ] = (1-Mu§ + x-§F < %-§
which contradicts the definition of X. So for each x € K, %-§ < x.§

and (%,§) 1is a stationary point of (f,K). O

The basis for the constructive results of this section is the
algorithm of Eaves and Saigal [7] for systems of nonlinear equations.
The next lemma gives a general condition on a point-to-set map
f:Rn —»Rn* under which an x & R" may be approximated which satisfies
0 € f(x). The algorithm solves the system of equations using piecewise
linear approximations. The solution is approached by solving finer and
finer approximations.

We say U separates v € U from infinity if every connected
set containing v and not meeting U 1is bounded.

Let ¢ C Rn. We define conv(C) to be the intersection of all

convex sets containing C. We write dia(C) for

sup llx=yll .
X, yeC

In proving the following theorem we list some of the most important
properties of the Eaves-Saigal algorithm. A complete description of

the algorithm may be found in Eaves and Saigal [7].

XL
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Lemma L. Let f:R" +F* be upper semicontinuous. Let v € "

Let U C Rn be a closed set which separates v from infinity. Let
D be the union of all connected sets containing v but not meeting U.
Define G:R" T by G(x) . conv(f(x) U {x-v)). Suppose that

0 € G(U). Then there is a & > 0 such that if the initial grid size
is less than 5 then the Eaves-Saigal algorithm will not evaluate f
outside D. Therefore it will converge to a connected set C_ £ q

with 0€ f(x) forall x€ C..

Proof. Given a starting point v and an initial grid size & the
Eaves-Saigal algorithm generates a sequence of sets Ci’ I = 0,)750

with the following properties.

2 A A conv(Co)

(2.2} dialC:) <8

;)

(2.3} ©¢€ conv(f(Ci) U (Ci-v))

(2.k) Cspg =G U [si}\{ti]

(2:5)%. if Ci - X on a subsequence then 0 € conv(f.’(C.l )) for all

J J
large j.

(e O 5 C; 1lie in a bounded set, then dia(Ci) - 0.

et C =1im¢C,, If %X€ C then 0 € f(x). If all the C,
0 S - 0 1

lie in a bounded set then C_ is a nonempty, closed, connected set.

17
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D 1is a connected set containing v, and not meeting U, so D
is bounded since U separates v from infinity.

We now use an indirect argument to verify the theorem. If the
conclusion does not hold then there is a gequence 6k — 0 such that
for each k the algorithm produces a sequence C?, i=0,1,2,... which
is not contained in D. For each k let xk be the first point in

k
the sequence Cj which is not in D. By (2.4) Ci - {xk} = Dl SO

d(xk,D) < sk.

=k k

) < 8&°. Since xk gD

there is a point W e conv(xk,ik) N U. Therefore d(xk,U) < 8%,

Let X° be any point in D with d(x,x
Let x* Dbe any cluster point of the xk. Then d4(x*,U) =0,

so x*¥ £ U since U is closed. But since for all i and all Kk,

0 € conv(G(C?)), it follows that O € G(x*). This contradiction proves

the theorem, O

In practice neither & nor the set U will be known to the user
of the algorithm. However, if it is known thet the function f and
starting point v satisfy the hypotheses of the lemma for some U

then the following process may be employed to find a solution.

1.) Choose 6k and Mk, kK =0,1,2,..s  stuch that 6k -0 and
Mk - o, Set k= 0.
Apply the algorithm to f wusing starting point v and initial
grid size 6k. If no points x < R" are generated with
Ix=vll > Mk then the algorithm must converge to a set of solutions.
Otherwise go to 3.

18




3,) Set k = k+l. Go back to 2.
Eventually, a k will be found for which bk is small enough
and llx-v|| < M* for all x ¢ D. Lemma 4 tells us that the algorithm

will converge to a set of solutions for this k.

In practice grid size does not appear to be critical. If the
algorithm seems to be straying too far from the starting point, it would
probably be better to look for errors in the formulation than to try

again with a smaller grid size.

Lemma 5. If p, q, and r are in R" and Hp-q“ < Hp-r” then

(p-r)(g-r) > 0.

Proof. Ip-all® < [lp-z|®

2,

I(p-r) = (a=1)° < lp-zI®

2
Ip-rll© = 2(p-r) (q-r) + lla-z[® < [|p-z]?

[»}
-2(p-r)(gq-r" + [la-r]| < 0

(p-r)(q-r) >0 . )

The next theorem is a constructive version of Theorem 3. In
order to be able to compute a solution we need only slightly stronger

conditions than in Theorem 3.
A function g:Rn —» R is convex by definition if for all x, y € Rn,

A - (0,1, g(Ax + (1-N)y) < Ng(x) + (1-A) g(y). If g is convex then

we define the subgradient map of g by
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yg(x) = (y € Rn]y-(x-u) > g(x) - glu) for all uc€ rY .

If g 1is convex then odg(x) is nonempty, compact and convex for each x

and g 1is upper semicontinuous.

Theorem 6. Let gi:Rn R i=1, ... , m be convex. Let
K={x€R'|gx) <0, 1=1,...,m). Let CCK be compact. Let
f:Rn —)Rn* be upper semicontinuous. Suppose that there is a uo € C
such that gi(uo) <0, i =1,...,m. Suppose that for all

x € K\C, y€ f(x) there is a u€ C such that (x-u):y > 0. Then

the stationary point problem (f,K) has a solution which can be

computed by the Eaves-Saigal algorithm using any starting point.

Proof. For each x € Rn define F(x) to be the set of all

Z?:O %iyl which satisfy these conditions.

m
L N =1 A>0

i=0 *

yo € f(x) Ag =0 if for any i # 0, gi(x) >0

i .
¥y € asi(x) A =0 if gi(x) < 0.,

First we need to show that F is upper semicontinuous. Suppose

that x” — x, and w € F(xj) for each j. For each j there exist

— 5 S s - R — - —




Rj and yl’J, 1 = 0,...,0 woich satisfy (2.7) and such that
wd = Z?-l Agyl’J. Since the x’ converge, they lie in some compact

set. The yi’j are in the (compact) images of this compact set
under f, 3gl, el Ogm. Thus there is a subsequence on which the
yi’j and %j converge, say to yi and A. In the following we
will deal only with this subsequence.

Since the g; are continuous, for all j sufficiently large
and for @ll 1 = 1,c...m, gi(xj) >0 if gi(x) >.@, and gi(xj) <0
if g (x) <0. If forany 1=1,...,m g(x) >0 then xg -0 for
large j, s0 Ay =0. If i=1,...,m and gi(x) < 0 then Kg =0
for large Jj, sO %j = 0. Since f and the Bgi are upper semi-
continuous, yo € f(x) and yi € agi(x). Therefore A, x, and yi,
i=0,...,m satisfy (2.7). Let w = Z?:O Aiyi. Then w € F(x) and

on the subsequence wJ —-w so F is upper semicontinuous.

It is clear that F(x) is nonempty, convex and compact for

each x.

Let vE R Let M= sup oo lu-vll. To show that F satisfies

the hypotheses of Theorem L it only remains to show that for all x € r"

with llx-v|]| > M that 0 € conv(F(x) U (x-v)).

So suppose x € R" and lx-v| > M. Let w€ F(x). There exist
y yo,...,ym which satisfy (2.7) such that w = Z?:O %iyl. There is

a u € C such that gi(up) <0, i=1,...,m. We distinguish two

cages according to whether %O = 0.

it A0?>O then x€ K\C so there is a u=C such that (x-u)-yo > 0.

Choose « sufficiently small that (x-(auO + (l-a)u))-yo > 0. Let

2k
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= Ouo + (1-a)u. Then gi(u') <0, £ =1,...,m. For each i =1,...,m

if Ai > 0 then gi(x) > 0, so bv the gradieni inequality (x-u')-yl

> gi(x) - gi(u'\ > 0. Now (x-u')-w = Z?:O

Ai(x—u'\-yi. This sum is
positive since no term is negative and some term is positive. Since
lx~vll > |lv-u']l we have (x-u’')-(x-v) >0 by Lemma 5. Therefore

0 ¢ conv({w} U {x-v}).

But if AO =0 then for each i =1,...,m if Ai > 0 then
gi(x‘ >0 so by the gradient inequality (x-uo)-yi o gi(x) - gi(uo) =0,
Now (x—uo}-w = Z?:l %i(x-uo)yi. This sum is positive since some term
is positive and no term is negative. Since [|x-v| > Hv-uOH we have
(x-uo)-(x-v) >0 by Lemma 5. Therefore 0 ¢ conv({x} U {x-v}).

Since 0 ¢ conv({w} U {x-v}) for all w € F(x),

0 € conv(F(x) U {x-v}).

By Theorem 4 we may use the Eaves~Saigal algorithm to approximate

an x € R® with 0 € F(x). For such an x there exist A and yi,

i =0,...,m which satisfy (2.7) and Z?=O Kiyi = 0. For each

1= Tt A > O then gi(x\ > 0 so by the gradient inequality
(x-uo)yi > gix) - gi(uo) > Ay <1 then

m $
Axmu)y® = - T x-w)yt <

i=1 pl

n oM

) Ai(gi(uo) -gx) <o

Thus %, > 0. Let u € K. Then
& i

)b(x-ﬁ)yo = - Ai(x-ﬁ)y =
i=1 i

B

8y - )
A (8 (w) - g (%) <0

n

10

So (x-ﬁ)yo <0 and (x,yo) is a stationary point of (f,K). O




.5. Unigqueness Theorems

In this section we explore the question of unicueness of
stationary points.

"
Let f:K - R® where K c R® 1is closed and convex. The

mapping f is called monotone on K if for every pair of vectors x

2 dht e 1y

. / 2 2 e e
and x° in K and every y € f(x7) and y~ € £f(x7), (x =x")-(y -y~) >O.

The mapping f is strictly monotone if for every pair of distinct vectcrs

2 2
x' and x* in K, and every yl € f(xl) and y~ € f(x

(xl-tf'-(yl-ye) > 0. The following is a useful uniqueness result for

n

)5

the stationary point problem.

2.z
THEOREM 7. Let f:K > RY ve strictly monotone. If there is a solution

to the stationary point problem (f,K) then it is unique.

1 S 1
Proof. Suppose (x*,yl\ and (x“,ya) solve (f,K). Then yl € f(xl),

=g f(x" and for all u € K, (u-xl)

: )
y 'yl >0 and (u—xa\-y‘ >0
e 2 il Q0 2 <
In particular (x"-x"):y >0 and (x"-x).y  >0. Summing these
2 1 ; . ’ .
we have (xl-x‘-(y’-yg) < 0. But this is impossible since f is

strictly monotone. O

The following theorem is based on the same idea, but is slightly
more general. By using linearity and relaxing the strict monotonicivy
we obtain not a unigue solution, but a convex set of solutions. However,

in many cases we may be able to determine the entire set of solutions.
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THEOREM 8. Let K c R and B€ R ™. Let L = {Bx|x € K}). Let

¥
sl BT Be strictly monotone. Let A € i

be positive semi=~

b
definite. Define g:K »R® by g(x) = BTf(Bx\ + Ax. Then the set
of solutions (x,y) to the stationary point problem (g,K) is convex

and Bx has the same value for all of these solutions.

Proof. Suppose (xl,yl) and (xg,ya) solve (g,K). Then there exist

< and - such that for i = 1,2, y= = BTw1 + Axt , W € f(Bx ) and

for all u € K, (u-x ( + Axi) > 0. In particular xg-xl)-(BTwl-kAxl):>0
and (x -x2) BT e Ax2) > 0. Summing these (x l-x2) (BT(wl-w )+A(x " )) <0
or (xl-xg)'A(xl-xg) + B(xl-xg)'(wl-wg) < 0. But since A 1is positive
semi-definite B(xl-xe)'(wl-wg) < 0. Since f 1is strictly monotone
this implies that Bxl = Bx2.

Let A€ [0,1], x = M- + (1-Nx°, ¥ = A" + (1-N)y°, and

= Awl + (l-k)we. Then Bx = Bxl = Bx2 and y = BTw + Ax. Since wl

and w are in f(Bx) and f(Bx) 1is convex, w € f(Bx). So y € g(x).

Let u € K. Since A 1is positive semi~definite

(u-x)Ax > )\(u-xl)Axl + (l-)\)(u-xg)Ax2

L

(u-x)BTw A(u-x)BTw + (l-%)(u-x)Bng

)\(u-xl)BTwl + (l—?\)(u-xg)BTw2

"

(u-x)(BTw + Ax) > A(u- (B W+ AxD) + (1-A) (u-x \(B we + AxS ) >0

Therefore (x,y) solves (g,K) and the theorem follows. el

ol
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CHAPTER 3

PROOFS OF THE MAIN THEOREMS

This chapter is devoted to the proofs of the theorems of

Chapter 1. Theorem 1.1 will not be given a separate proof since it

is clearly a special case of Theorem 1.2. Here 1t > ¢ means no

component of t 1is less than «.

Proof of Theorem 1.2.

Throughout this proof t will represent the constant zero.

K, k
Thus t ¢ R* where m = [2

= IW [-1). For computational efficiency
we will make the additional requirement that yij s < O for all arcs
b

ij. In the following we will show that a solution to the equilibrium

problem can be computed which satisfies this restriction. For this

reason we will regard y as a vector in R® where n = q- (lﬁ [-1)
: ) x h 3 o u OR
and q = |@| is the total number of arcs. Define B € R
by
g P E R
(By) E Yis,k ijea

Then we may write

T
\ % 1 = :
(B ) g5 = %4 ik, ij€ @ k€’7.

m X n

Define a matrix A € R by
(Ay)i,kzi‘fyij,k-%yji’k 1 #k, 1,k€?.

)€




Then we may write

= - t 5 3 k, LJ " @ k € .
(A gk = %k " bk ? ¢ = B ?7

In these formules yij i and tk e are to be read as zero

where they appear.
For each £ # k, £, k - 77 choose a path from £ to k. Let

2,k 2,k

d be a vector in R" such that 45 =1 if 1j is on the path

and all other components of dz’k are zero. Thus Adg’k is a vector

in R® such that (Adg’k)g’k = 1 and all other components are zero.
Choose b € R™ so that b > g(t) for all t >c. Choose

h € R" so that for all i,jE@,kE?], i4k

hij’k > %’ (b

et L

Let K = {(y,t) € Rm+n!t > e 0<y<h}]. Define

*
G:KT2 L R py

BLf(By) - ATt

G(y,t) <
Ay - g(t)

We proceed to show that the stationary point problem (G,K)
may be solved as described in Chapter 2, and that this solution will

also solve the equilibrium problem.

e i,k o
Let y = Zi,k(bi,k + 1)d™’". Then for each ij € a@,

i1 #EE 77 we have the following.
26
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0 _ L,k _
Yij,k ‘% (et 2 0 -l§ (b, o * 1 <8y, 5
yo <h
PR (T B0 nat E T

Here e € Rm ig a vector of ones. Let

M = ~inf((y-y°) BT 7|0 <y <h, T € £(By)) .

Then M >0 since 0 < yo < h. Let

C={(y,t) € " (y,t) €K et <M

IF (%) € K\\\C then for each 7y € g(%), £ f(By)

grag | S A

PR 3 N, 0
= (y=y ):B 1 + t-(Ay -v)
t Ay - v

> =M + est =0 .

So by Theorem 2.6 the stationary point problem (G,K) can be

solved.
Suppose ((y,t),(BTr,r\) solves the stationary point problem

(6,K). By Proposition 2.2 we may write this in the following way.

t_>_‘:1 OSY_(;h, Y\fg(t), t - £(By)
ik SE Vg0 2 Yk
J J
i#k, i, kK€ 7(
. - \

T T



<h
ij,k ij,k
fo A e 136@,1::?, 14k

IA
o

ult § yij,k >0

If for some i,k, Yik < Xj y - Zj y then t, =

k

b
along some path from i to Kk, yi e > 0.
11

1S ." - " >», i =
Therefore til’ > tiQ,k+' since 1111 But since tk,k

> > . . Q ~ = }: -
ti,k by transitivity along the path. So ]i,k 5 yij,k ij

ij,k i1,

and for all arcs 1112

X 0,

ji,k
after all,

If for some ij < @, k € 7 0 e, yij kzhi,j K then
E ’

Visk > ZE bl,k o Z? IR That is, the traffic on arc ij with
destination k 1is greater than the traffic from all origins with
destination k. This is only possible if there is a loop which includes

ij such that for all ili2 in this loop ¥ o1 .k > 0. This implies
e

that t. =55 since T. . > 0. But this is impossible since
1 o i ks hals
1 2 12
it implies by transitivity along the loop that ti K is less than
b

itself. Therefore y < h.

Since t > e it follows that t >0. Since >0, t > O.

= o b .
and tk,k =6 for all K, Tij i tj,i ti,i 0]

Taking the last three paragraphs into account we may write the

solution conditions for the stationary point problem in this way:

t >0, y >0, r € g(t), v € f(By)
" ” k, i, k €
i,k %yij,k ?yji,k 14k %
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But these are precisely the desired equilibrium conditions if we let

x = By. ]

Before proving Theorem 1.3 we will need the following lemma
on the minimum of a continuous function. If £f:R* 5R and DC R"

then we define

arg min f£(x) g {x € D|f(x) < f(y) for all y € D)
xED

*
Lemma. Let K:R® 5D be continuous, where D 1is a compact subset

of R?. Let f£: R® x Rk — R Dbe a continuous function. For each
o om k A » " s
z€R, wE R let J(z,w) = arg min f(x,w). Then J 1is upper semi
x<K(z)
continuous.

~ e J(zl,wi) for all i. Since

Proof. Suppose zi -z, wi - w, and X
each xi € D there is a subsequence on which the xi converge, say to

x. Since K 1is upper semicontinuous, x € K(z). Hereafter we will work
only on this subsequence. If ; € K(z) then since K 1is lower semi-
continuous there is a sequence Qi - % such that §i € K(zi) for all .

Therefore

i

f(x,w) = lim f(xi,w1) < lim f(%l,w ) = £, %)

L p

So x © J(z,w) which implies that J is upper semicontinuous. O
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Proof of Theorem 1.3. For each j =1,...,p and each t > e let

K2 (t) = {(g,y9)|¥ >0, @° < g%, v < q)

J

Then for each (qJ,Y ) € KI(t) we have O < q? < aY ana

m =
m |-

Q1

Therefore U KJ(t) is bounded. Define
t >e

nd(t) - arg min u(a%, vd)

(a7, v9)er? (¢)

J

Then n° is bounded on (t|t > ¢}.

For each t > ¢ there exists (qj,rj) € Kj(t) such that rj > 0,
qj < aj and rj-t < qj. So by [6, Corollary II.3.2] K9 is continuous.
By the lemma hj is upper semicontinuous. But gj can be obtained by
deleting the first component in the range of hj. Therefore gj is

nonnegative, bounded, convex valued, and upper semicontinuous on

{t|]t >¢), and so is g since g = ngJ. O

Proof. of Theorem 1.4. In the proof of Theorem 1.2 we introduced a

stationary point problem (G,K) and showed that solutions to (G,K)
are also solutions to the network equilibrium problem. Here we show
the opposite, namely that solutions to the equilibrium problem solve
the stationary point problem. The theorem will follow when we have

shown that (G,K) satisfies the hypotheses of Theorem 2.8.
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Since g 1is nonnegative and =g 1is strictly monotone, g
is positive. Suppose y, t, T, and y solve the equilibrium problem,

We may state this as follows.

t >0, y20, v € g(t), T € f(By)

54,k i# k, i,k€7z

i3€ @, k e'yl
By * g =8 W Wpp =
For any pair of nodes 1i, k since Yi,k > 0 then for all
arcs ili2 along some path from i to Kk, yiliq,k > 0. Therefore
til,k = tig,k + € since Tilig > e, But since Ltk,k =0, ti,k > €

by transitivity along the path. So t > e.
i € i o
If for some 1ij € @, k C? s 1 ¥ Ky yij,k > hij,k
Yii,k > Zz bz’k zzﬁ R That is, the traffic on arc ij with

destination k 1is greater than the traffic from all origins with

then

destination k. This is only possible if there is a loop which includes

ij such that for all i, i in this loop Yi i .k > 0. This implies

b2 11
S be : L
that til,k tig,k since Tilig > 0., But this is impossible siace
it implies by transitivity along the loop that ti K is less than
’

itself. Therefore y < h.
Since t > ¢ and y < h, we have in fact a solution to
(G,K).

31




To show that the hypotheses of Theorem 2.8 are satisfied we

make the following definitions.

0 AT B 0

=1
]

(ox]]
!

mXxXm
f(x,t) = (£(x), -g(t)) .

Clearly G(y,t) = ﬁTf(E(y,t)) + A(y,t). F is strictly monotone because
f and =-g are strictly monotone. It is easy to see that A is
positive semidefinite. Therefore the set of solutions to the stationary
point problem (and the equilibrium problem) is convex, and B(y,t)

has the same value for all such solutions. In particular t is unique

and By 1is unique but the flows y may not be unique. 0
52
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CHAPTER 4

COMPUTATION

The purpose of this chapter is to demonstrate the computational

viability of the procedures described in Chapters 2 and 3.

4,1, Formulation and Approach

The method used to solve the network problems is outlined
in the proofs of Theorems 1., 2.4 and 2.6. The proof of Theorem 1.2
(Chapter %) shows how the network problem can be formulated as a
stationary point problem which satisfies the conditions of Theorem 2.6.
The proof of Theorem 2.6 shows how such a stationary point problem
can be formulated as a problem of finding a zero of a point-to-set map.

H. Z. Aashtiani [1] has had some success with an approach to
solving traffic network problems which uses Lemke's algorithm as a sub-
routine. However, no convergence proof is offered for this process.

Considerable latitude is available in solving a stationary problem
(£f,K) using the Eaves-Saigal algorithm. The remainder of this section
is devoted to a trick which uses this latitude to reduce the time required
to solve certain stationary point problems.

In the proof of Theorem 2.6 we defined a map F Dby setting

F(x) equal to the set of all ZT:O xiyi such that
m
LN =1 A>0
i=0
O’- —_
y € f(x) A =0 is for all i # 0, gi(x) >0
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¥~ € Vg (x) N =0 if g (x) <o,

In solving a point-to-set map F wusing the Eaves-Saigal algorithm

a unique member of F(x) must be chosen for each point x € Rn.

It
is often the case that f and agi are continuous, so that the y'l
are unique. However we still must choose the weights Ai.

In addition we may choose the triangulation or grid on which
the Eaves-Saigal algorithm operates. In the case where the functions
g; are affine it is possible to choose a triangulation in which every
simplex which meets the interior of K 1is contained in K. Using such
a triangulation with a choice of A where %O =1 if x € K, we obtain
greatly superior convergence. This is due to the fact that a solution
to the piecewise-linear approximation at large grid sizes is a good
approximation to the actual solution. This is not true for most choices
of weights A and of the triangulation. Finding a suitable triangulation
is particularly easy in the case where the constraints on K are only
upper and lower bounds, as they are for the network problems of Chapter 1.

In the next section we will demonstrate empirically the usefulness

of this technique in the case of the traffic flow problems,

L.2. Examples.

In this section two examples are given of the network formulation
of Chapter 1. 1In order to solve these problems we prepared a computer

code which provides an interface between the network problem and the

3L
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Faves-5aigal algorithm. We used a program by Romesh Saigal to execute
the Eaves-Saigal algorithm.

All of the computer runs were made on an IBM 370/168 using
FORTRAN H with the highest level of optimization.

If D C R' then the diameter of D is sup

l%=
x,y_Dl,x yll. The
initial grid sizes reported below refer to the diameter of the simplices
on which the function is first evaluated. The final grid sizes refer

to the diameter of the final simplex.

The first example is based on the following network.

LN

Here Cv = {1,2,3} and ¢ = {12,21,23,31). The delay functions are

(y,,-10)
flz(y) =10 + e + 105 log(y21 + 1,0)
(y,,-10) \
f“l(y) s 10 % '8 2% + 1.25 log(y12 + 1.0)
(y.,=12)
£ (y) =k+e &2
23
(¥4, =20)
- o1
f5l(y + e
where
AN S .
Y13 K Yij,k




The travel demand functions are as follows.

8,028 =g 1

120
g, z(t) = ————
1,3 tl,5+ i

Lo :
T 1 B d 3 2V 2
g. .(t) = ’

5.0
100 _ T
B q T L s s Y
bl

+ ek
CAPE! B, 0E a3

+ =
&,,5(t) o

- ]

2,3 2,5

{'—le——— TG >t

n

60
g, (t) = ————
3.1 By 1t 1

100
B o P
3,2

g3,2(t)

Where more than one function value is given at a particular

point (e.g. t ) the value of g is the convex hull of the

0
two values. In this case some of the travelers from node 2 will go to
either 1 or 3 depending on which is closest. If the travel times are

equal then those travelers who want to go to either 1 or 3 will be

divided between the two destinations.
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Arcs 12 and 21 represent a two-way street. Note that although
the function is symmetric with respect to the two arcs, the Jacobian
matrix will not be symmetric unless the flows in the two directions are
equal. Therefore, the method proposed by Dafermos [L4] would not be
applicable here. Furthermore the demand functions are neither invertible
nor continuous. Therefore the full power of Theorem 1.1 is required to
solve this problem.

Here are the equilibrium values.

1,k Yk gi'k(t>
1,2 19.30 3.94
1,5 28.43 L.08
0 | 13.22 2.81
2,3 9.13 7.9
o 30 X L.09 11.79
By 25.56 4.10
o Yij,k fis
1202 8.04 19.30
12,3 L.08 19.30
21,1 135 15.22
215 0.00 13.22
23,1 1.66 9.13
23,3 11.97 9.13
-5 o] 13,46 L.09
Slg2 4.10 k.09
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This problem was run with and without the special alignment
discussed in Section 1. In each run the initial grid size was 18.7
and the final grid size was 2.8 x 10-7. The same answer was found in
each case.

In the first run the triangulation was aligned with K. 1In
this case the algorithm required 886 function evaluations, 979 pivots, and
1.70 seconds CPU time. The starting vector had 1.25 in each component.

In the second run no alignment was used. This time the algorithm
required 1598 function evaluations, 1690 pivots and 2.83 seconds CPU

time. The starting vector had 1.00 in each component.

The second example is based on the following network.

Now ﬂn = {1,2,3}) and @ = {12,21,23,32,31}. The delay

functions are

(v,,-10)
fi,=10+e + 1.25-10g(y,, + 1)
(v,,-10)
f,y =10 +e + 1.25'log(y12 + 1)
(y25-10)
f,3 = 5+0.5€ + o.625-log(y32 *+ 1)
(y52-10)
f32 = 5+ 0,5 + 0.625'log(y23 + 1)
£5, = 15.0 + 1.5e(y5l-5'0)
38




where
S E, W
le > i e
The travel demand functions are identical to the earlier example.

Here are the equilibrium values.

i,k 2N gi’k(t)
1,2 13.30 9= 59
1,3 23.55 L.89
2,1 13.05 2.85
2,3 10.25 7.1
3,1 15.39 5.66
3,2 8.04 11.06
ij,k Yi3,x ij
12,2 5. 59 15.30
12,3 4.89 13.30
21,1 2.85 13.05
21,3 0.00 13.05
03,1 0.00 10.25
23,3 12.00 10.25
32,1 0.00 8.0k
3,3 11.06 3.0k
31,1 3.66 15.39
31,2 0.00 15.39
39
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This problem was also run with and without the special align-
ment discussed in Section 1. In each run the initial grid size was
20.0 and the final grid size was 2.9 X 10—7. The same answer was found
in each csase.

In the first run the triangulation was aligned with K. 1In
this case the algorithm required 1107 function evaluations, 1204
pivots and 2,39 seconds CPU time. Without alignment the algorithm
required 1921 function evaluations, 2016 pivots and 3.92 seconds CPU
time. The first starting vector had 1.25 in each component, the second
1.00 in each component.

From these runs we may conclude that the procedure developed

here is a viable approach to the traffic equilibrium but that the

alignment technique significantly reduces the computation time.
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